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ABSTRACT

We prove that the Hamiltonian system
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has at least one periodic solution of enerqy h, provided that the set

{qg e ©*|V(q) < n} is compact.
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SIGNIFICANCE AND EXPLANATION
\;J Questions of existence of periodic solutions for classical mechanical
systems have a long history. The development of the nonlinear functional
analysis has provided powerful new tools and renewed interest in these

. N
problems. In this paper we consider: the Hamiltonian system caoe e v

B = -3
(*) %
gd=p
where p,q e R® and Ve c2(|P) and we prove that (*) has at least one
periodic solution of energy h, provided that the set
{q e R*|V(q) < h}

is bounded.
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CLOSED GEODESICS FOR THE JACOBI METRIC AND PERIODIC SOLUTIONS
OF PRESCRIBED ENERGY OF NATURAL HAMILTONIAN SYSTEMS

V. Benci®

1. INTRODUCTION AND MAIN RESULTS.

We consider a natural Hamiltonian function H € Cz(lzn) i.e. function of the form
(1.1 #p,a) =% Ipl2 + V(@9 pge R
and the corresponding system of differential equations
. 3H . _3H
(1.2) p=- aq’ q.ap

where "°Y denotes d/dt.

It is well known that the function H itself is an integral of the system (1.2). 1In
fact it represents the energy of the dynamical system described by (1.2). It is a natural
problem to ask if the equation (1.2) has periodic solutions of a prescribed energy h. The
main result of this paper is the following theorem:

Theorem 1.1. Suppose that

(1.3) 0~ {qgeR|viq) < h}

is bounded and not empty. Then the Hamjiltonian system (1.2) has at least one periodic

solution of energy h.

Remark I. The assumption (1.3) is necesgsary. In fact the Hamiltonian

H(p,q) =Y 1p|2 + q has no periodic solution.

Remark II. 1If there is q, € 30 such that VV(qo) =0, then g3gy and p= 0 is a
periodic solution of (1.3) of energy h. If we want to have nonconstant periodic solutions
of energy h, we need to add the following assumption

(1.4) Vig) * 0 for every g € 3R .

If (1.4) is violated, then it may be that (1.3) has no nonconstant periodic solution as the

following example shows:

t
np,q) =% Ip12+q*-a® (p,@)eRrRr h=o0 :
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Remark III. As it will be clear by the proof, Theorem 1.1 applies also to Hamiltonians of

the form

(1.5) H(p,q) = yﬁlij ‘1j(q)Pipj + Viq)

where {aij(q)} is a positive definite matrix for every gq € . However, since our proof
is based on the variational principle of Monpertius~Jacobi, it cannot be applied to
Hamiltonians whose "kinetic energy” term is not a positive definite quadratic form.

The search of periodic solutions of prescribed energy is a problem which has a long
history. We refer to [R1] and (Br] for recent surveys and we restrict ourselves to
mention only some of the more recent results. Weinstein and Moser (W,M] have studied the
existence of periodic solution near an equilibrium. 1In this case, under suitable
assumptions, the existence of n periodic orbit can be proved. However, far from an
equilibrium, the existence of n-periodic orbits can be proved only under more
restrictive assumptions on the energy surface H(p,q) = h. Eckland and Lasry ([EL]
have proved this fact when such surface if convex and contained in the set
ap = U(p,q) | R ¢ |p|2 + |q|2 < R/2} for some R > 0 (see also Ambrosetti and Marcini for
another proof [AM]). A result of Berestycki, Lasry, Mancini and Ruf [BLMR] is the last
results in this direction as far as I know; it includes both the theorm of Weinstein and
the theorem of Eckland and Lasry.

If the existence of at least one periodic orbit is required more general Hamiltonians
are allowed. Seifert, in a pioneering work [S], has proved that the Hamiltonian (1-5) has
at least one periodic solution provided that § is diffeomorphic to a ball. The theorem
of Seifert has been generalized in many ways (cf. [R1]). The last results in this
direction is due to Rabinowitz [Rzl. He considers a Hamiltonian of the form

H(p,q) = K(p,q) + V(q)
where %E +p>0 for Ipl >0 and Q ig diffeomorphic to a ball.
Under these assumptions he has proved the existence of at least one periodic orbit.

The result of Rabinowitz, compared with Theorem 1.1, allows a more general "kinetic energy”

term but still has to impose that  is diffeomorphic to a ball.




Also in a recent paper Gluck and Ziller [GZ] have proved a theorem similar to Theorem
1.1. Under the assumption of Theorem 1.1, they have proved the existence of a nontrivial
periodic solution (actually of a brake orbit; cf. Remark IV for its definition); (they seenm
to have forgotten to explicitly state assumption (1.4) which is necessary as the Remark II
shows). Our proof of Theorem 1.1 is quite different from their proof; it is based on a
different approximation scheme and uses more analytical tools

Our method of proving Theorem 1.1 is hased on the least action principle of
Maupertius-Jacobli (cf. e.g. [A] page 245 or [G] for Hamiltonians of the form (1-5)} which
leads our problem to a problem of differential geometry which will be explained below.

Let 1 be an open set in K’ with smooth (say Cz) boundary and let a € Cz(ﬁ,lln)

be a nonnegative function. We consider the metric

(1.6) & = Yaix) 4s xed

vhere as =/ )1 (axi)2 is the Buclidean metric. If a(x) = h - V(x), (h € R) the
metric (1.6) is the “Jacobi metric" associated to the Hamiltonian (1.1). The Maupertius-
Jacobi principle states that the closed geodesics of the "Jacobi metric™ are the periodic

orbit of (1.1) of energy h.

To be more precise we give the following definition
Definition 1.2. A continuous function Y : s‘ +§ (g - 10,11/{0,1}) 4is a closed
geodesic with respect to the metric (1.6) if it satisfies the following assumptions:
(1) Y(t) € ? except may be for t =0 and ¢t -‘/2
-1
(11) v e c3(1,9) vhere I =y ()
-] 1 . 2v
(114) o fa(y)¥) =% |¥]Va(y) for every t e 1.

Remark IV. The closed geodesic as defined by the above definition are of two different

type:
(1.7) interior geodesics: Y(S‘) N = ¢
(1.8) brake geodesics: 1(81) 3 = {0, 1/2)

The interior geodesics are just smooth curves contained in I, while the brake geodesics
satisfy the relation

(1.9) Y{t) = v(1 - ¢)

3=




(1.9) is an easy consequence of the Maupertius-Jacobi principle (cf. Remark V). The

precise statement of the Maupertius~Jacobi principle is the following

Theorem 1.3. Suppose that
(1.10) a(x) = h - V(x)

and that (1.4) is satisfied. Then to every closed geodesic, by a suitable

reparametrization of the independent variable (time), corresponds a periodic solutjon of

(1.1) of energy h.
Proof. FPor the convenience of the reader we shall give the proof of he Manpertius-Jacobi

1 if Y 1is an interior

principle. let Y be a closed geodesic and let I, denote s
geodesic or (0O, b&) if Y 4is a brake geodesic. As we can check easily vga(1)|7|2 is
an integral of equation (iii). Then

(1.11) vha(Y)lflz =~ 1 for every t € I,

whexre X > 0 is the integration constant. By (1.10) and (1.11) and equation (iii) we get
(1.12) a 5:? fa(y)¥] = =AVV(Y) for t e (0,1)

Now we define the following function

(1.13) (t)-]t-i—dt ter
: 8 o (YT g
If y(t) is an interior geodesic ;?;%;TT is a bounded function. If Y(t) is a brake

geodesic we have to prove that the integral (1.13) converges.

By (1.11) we get the following inequality

Id 1 l - |Va(Y)'?| < /‘EX‘ IVG(YLI

— 1
at agyen’ - szt &)

a(y)? aly

Since we have supposed V € cz(ﬁ), |va(x)} 1is bounded for x € I, so we have

1 5/2
) /

e __ 1 __ 1
% aoveen! <™ (amween v €0, )

where My is a suitable constant.

-4~




The above inequality and standard estimates for ordinary differential equations give

the following inequality near ¢t = 0 and ¢t = 1/2

M
1 2

<
a(r(t)) (t - tg)

273 with tq =0 or Y, and M, is a suitable constant.
Thus in every case the function (1.13) is well defined for t € io. Since it is a
continuous increasing function it is invertible; ¢t(s) will denote its inverse.

We now set
{(1.14) q(s) = Y(t(s))
By (1.12) we have

-1
(1.15) -:f-x Va

aly) for t e s(Iy)
Then
d

2 1 1
a 8 o8ty _,-Ya . -4 .t =1 a .
peh Ll (¥ 2] =27 257 tatr] =27 25 (aty ) 35 = AT aly) g atnV)

Replacing the above inequality in (1.12) we get

dZ
(1.16) 3 ats) = =Yviq)
ds
The above inequality holds for every s € t(I,). If Iy = (0, '/2) arguing in the same way

we can prove {1.16) for (1/2, 1). Thus (1.16) holds for every s € t(S‘). Moreover by

(1.11), (1.15) and (1.10) we get

A (I(Y)

2
") )‘_1/2] +h=-aly) =h

(1.17) LA (%‘.1)2 +viq) =Y, le(g%)z + v(q) =

Finally setting p{s) = 1}:—'-)-, we obtain a periodic solution (g{(s),p(s)) of (1.1) of
energy h.
Remark V. By the proof of theorem we see that a brake geodesic generates a solution of

(1.16) such that q(s(0)) = Y(0) and q(s{ ¥5)) = ¥{ ‘/2 ). Moreover, by the uniqueness of

-8




the solution of equation (1.16) it follows that q(s( 95) - 'o’ = q(s( 9&’ + lo) for
8y € (0,s( b&)). Therefore the brake gecdesic satisfy (1.9). Also we have the following

formula for the period of q(s):

1 —
/X
T !, atv(tn &

The problem with the metric (1.6) is that it degenerates for x € 30 so that the standard
techniques of the Riemannian geometry cannot be applied without many troubles
The main purpose of the next section is to prove the following theorem

Theorem 1.4. let § be an open bounded set in R* with boundary of class C2 and let

a e Cztﬁ) be a nonnegative function. Then if

(1.18) a{x) = 0 if and only if x € 392
(1.19) Va(x) # 0 for x e 3N

there exists at least one closed geodesic for the metric (1.6).

Clearly Theorem 1.1 is an immediate consequence of Theorems 1.3 and 1.4

-6-




2. PROOF OF THEOREM 1.4

The geodesics are the critical points of the "length® functional

V= to,11/10,1}

(2.1) Jv) = [ atmy|t]2ae v e c2(3", &) where s
However, since a(x) degenerates for x + 30, it is difficult to study directly the
functional (2.1) and an approximation scheme seems to make life easier.
Let x € C (R) be a function such that
x{t) =0 for 0 <€t < 1

x{t) =2 for ¢t > 2

x'(t) >0
and for every € > 0 we set
€ 1
(2.2) Ue(x) - X(m) a0 {
and g
(2.3) g 0 = [ {Ypamrl? - v mlae v e ciis’ f

Clearly for every Y € C2(51,ﬂ). JE(Y) + J(Y) for € + 0. The critical points of I,

satisfy the equation dJE(Y)IGY] =0 i.e.

/ lacr ot - 81+ Yy (atr) - s Y2
(2.4)

€ 1 € 1
+ gmy) L x5y oy 3l7a0r) « Svjae = 0
€ €

which gives the Euler-Lagrange equation for the functional (2.3)

(2.5) L tar) =Y 141 7atn) - vo_v)

Of course equation (2.5) are an approximation of the geodesic equation (iii) of Definition
1.2. However equation (2.5) is easier to deal with. 1In fact we have the following result.

Theorem 2.1. For every ¢ € (0,60) where €4 is small enough) there exists a function

Y. © C2(81,FP) solution of (2.5). Moreover Y. can be chosen in such a way that the

following estimate holds

ac<J(v)<B

where a and £ are constants which depend only on @ (and not on €).

-7~




The proof of the above theorem is contained in [B], Theorem 1.1.

Our aim is to prove that {Ye} has a subsequence converging to a closed geodesic

€>0

for our Jacobi metric. To carry out this program some estimates are necessary. We set

s, = 3.0 = [ { hatvole 12 - vty )}ae

L, = [ atr )l e
The interpretation of 5. and L, are obvious: L is the square of the length of the
curve Y. in the Jacobi metric; Se can be regarded as the action functional of the
trajectory Ye with respect to the Lagrangian function
Le(x'E) = VQG(X)|E|2 - Ue(x) (xeQ, £ € ™M). Notice that Le(x,£) 1is not the

Lagrangian function associated with the Hamiltonian (1.1).

Lemma 2.2. There exists a sequence g * 0 and a constant Ly > 0 such that

(a) sek + L, for k + +=
(b) Ltk * Ly for k * +®
Proof. By Theorem 2.1 we have

a<s <8

Then (a) follows straightforward.

By (1.18) and (1.19), for every M > 0 there exists € > 0 sguch that

[va |2 N
2 a(x)

for every x sguch that a(x) < €/2
a(x)

By the above inequality we get

2
€ 4 |Va(x)] € LI,
(2.6) x(5rwy) VLI (o) ary ™ MO )

So we can select sequences ek + 0 and M, + +» such that

(2.7)

€ 2

\4

U (x) ¢ L x(——E—J a(x; for every x €0
€. M, a(x) a(x)




By the equation (2.4) with §8y(t) = Va(Ye(t)) we get

. 2 2
[ fatypdtacy w02 + Yy 18, 12 vacy )|

(2.8)
¢ |vmr£)|2 IVa(Y€)|2

]
3 ]dt = 0

a(y_ ) 2
€ a(Ye)

€
a(Ye)

+ x( + ex'(

‘(Yc)

where dza(x)lizl denotes the second differential of a(+¢). Since the second and the

fourth term in the above integral are nonnegative, we get the following inequality

2
lvacy, )|

(2.9) ]"(a(: )) k2 at < - | a(ye)dza(Ye)[Y'elzdt < 1a%a | a(Ye)lY'clzdt
€ a(Ye )
"

where we have set

1a%a1 = max{dza(x)[Elzlx efl, tem, |g] = 1)

80 we have

=1 23t = -
L, vy J a(yek)l'?ekl a =s  + | u_ (v, )at

k k k k
2
. |vaty_ |
€
<5, + [ x (I5) —ar wy (2.7
k% e ) ay )
€
k
ldzal 2
<s, = aty, )h{e |“ar vy (2.9)1 .
k% X
2
- se . 1a"al I%
% K
Thus by the above formula and thedefinition of se and LE we get
2
(1 -M) L, <s <1
Mk k k k
Thus, since M + += and se * Ly for k * +°, the second assertion of the lemma

k
follows.
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Corollary 2.3. If we set

1
- [ s 12
E ‘I, Raly VIV 1% + u (v )ae

we have
(a) Vpaty (eI (£)]% + U (Y (£)) = B for every t € (0,1]
(h) Eek*Lo for k * 4=
Proof. (a) by direct computation, it is easy tosee that the left hand side of equation
(a) is an integral of equation (2.5). More exactly if Je is interpreted as the Hamilton
functional for the Lagrangian Le(x,E), then E. can be interpreted as the energy.

(b) follows by the fact that we have the identity
!e = 2L€ - Sc
and by lemma 2.2.

Now let H‘(S‘) denote the Sobolev space obtained as the closure of C-(S1,Rn) with

respect to the norm
1
1
I AN R M
H 0
1,1
Lemma 2.4 There eixsts a sequence €, + 0 and Y @H (S ) such that

Y +7Y weakly in H'(s")
€k

Proof. Consider the equality (2.8). Since the third and the fourth terms are nonnegative,
we get
1 . 2 - 2 2 2 2
(2.10) Y J ]yellva(ys)l at < - | a(y )a%aly )71 < 1a%al J aty ) |¥ | “ae
By (1.18), (1.19) and the compactness of ﬁ, there eixsts constants VvV, M > 0 such that

(2.11) Ma(x) + |Va(x}]2 > v for every xeq .

By Corollary 2.3(b), we have that

(2.12) Y% | a(y, )l?e 12 < Lo+ 1 for k large enough .
k k

So by the above formula and (2.10) we get

¥/ lVa(Ye )fzhe ,2 < (g ¢+ 2)1d%al  for «x large .
k k




Adding the ahove formula with M times (2.12) we get

Yl {m(vt ) + [Vaty, )I"‘Hvi':l2 € C with C = (21y + 2)idal + (Ly + 1M
" k

Now, using (2.11) and the above formula we get

v 2
311 17 < c

The above inequality, and the fact that I is bounded imply that IYk 1 4 is
€ R

bounded. Then the conclusion follows, may be taking a new subsequence of ck'-.

Finally we can prove Theorem 1.4.

Proof of Theorem 1.4. By lemma 2.4 we have that

(2.13) Y, + Y weakly in H'(8") and uniformly.
ck

We want to prove that there exists t, € s1 and 4> 0

(2.14) di-t(Ye (to),am >4)>0 for every k .
k

We argue indirectly and suppose that for every t € s1 there exists a sequence 4G + 0

such that
dist(Yek(t),am < tlk

Then we have

- (1 s 2 . 2
Lek J /za(yek)lyekl at < Mx{n(x)|d1|'t(x.3m <a) "k',,1 .

Thus by lemma 2.4 and (1.18), Le + 0. But this fact contradicts lemma 2.2. 8o (2.14)
k

holds. Therefore the set {t|y(t) € 2} is not empty. let A be one of its connected

components .

Now let ¢ € c;(A,Rn) (i.e. a smooth function with support contained in A). By

equation (2.4) with 8y = ¢ we get




. 2
(2.15) Jaty wW_$+% I 1“aty_ )+ ¢) - {Yu_ (v_ (v_ )¢ldt = 0
A %k Sk “x €x x ®x ®k

Since Ye + Y uniformly then
k

a(Yk) + af(y)

(2.16) uniformly.
Va(Yk) + Va(Yk)

Moreover by (2.2)

(2.17) VUc (Yk(t)) = 0 for k large enough and t € supp ¢
k

Now (2.13), (2.16) and (2.17) allow us to take the limit in (2.15) and we get

[ anié + % 1112 (Tatr),e)at = 0 for every ¢ € Coa.R)
A

Therefore Y satisfy equation (i1ii) of Definition 1.2 for every t € A. Thus if A = s!
we have obtained an interior geodesic and we are finished. If 4 # s‘, we consider the
affine transformation

T A+ (0, Vo)
Since equation (1ii) is invariant for affine transformation, the the function

. v~ e if te (o, %)
Yit) =

yir ' - e if te (Y.

provides a brake geodesic according to Definition 1.2.

-12~
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